On lance deux dés cubiques équilibrés et on fait la somme des nombres obtenus.

Le tableau ci-dessous résume les probabilités d'obtention de chaque résultat possible de la somme.

Somme											12
Probabilité	<u>1</u>	<u>2</u>	3	<u>4</u>	<u>5</u>	<u>6</u>	<u>5</u>	4	<u>3</u>	<u>2</u>	<u>1</u>
	36	36	36	36	36	36	36	36	36	36	36

On joue au jeu suivant composé de quatre règles :

- règle 1: si la somme obtenue est paire, le joueur gagne 1 point;
- règle 2 : si la somme obtenue est un multiple de 3, le joueur gagne 2 points ;
- règle 3 : si la somme obtenue vaut au moins 10, le joueur gagne 5 points ;
- règle 4 : dans les autres cas (donc si la somme obtenue vaut 5 ou 7), le joueur perd 10 points.

Les points sont cumulables : si la somme obtenue vaut 10, le joueur remporte alors 1+5=6 points.

1. Pour tout entier $k \in \{1; 2; 3; 4\}$, on note X_k la variable aléatoire correspondant aux points obtenus grâce à la règle k.

Déterminer la loi de probabilité de chacune des quatre variables aléatoires X_k puis en déduire leur espérance.

- 2. On pose X la variable aléatoire correspondant au total des points obtenus à l'issue de la partie.
- **a.** Écrire X en fonction des variables aléatoires X_1 , X_2 , X_3 et X_4 .
- **b.** En déduire E(X). Le jeu est-il favorable au joueur ?

- 3. Un groupe de 18 amis décide de jouer chacun une fois à ce jeu. On note Y_1 ; ...; Y_{18} les variables aléatoires correspondant aux points obtenus par chacun des joueurs et Y la variable aléatoire correspondant au gain obtenu par le groupe.
- **a.** Exprimer Y en fonction des variables aléatoires Y_1 ; ...; Y_{18} .
- **b.** Pour tout $k \in \{1; ...; 18\}$, comparer $E(Y_k)$ et E(X).
- **c.** En déduire $\mathrm{E}(\mathrm{Y})$ puis interpréter le résultat obtenu.